
The OpenMP Implementation of NAS
Parallel Benchmarks and Its Performance

H. Jin∗, M. Frumkin∗ and J. Yan

NAS Technical Report NAS-99-011 October 1999

{ hjin,frumkin,yan} @nas.nasa.gov
NAS System Division

NASA Ames Research Center
Mail Stop T27A-2

Moffett Field, CA 94035-1000

Abstract

As the new ccNUMA architecture became popular in recent years, parallel programming
with compiler directives on these machines has evolved to accommodate new needs. In
this study, we examine the effectiveness of OpenMP directives for parallelizing the NAS
Parallel Benchmarks. Implementation details wil l be discussed and performance wil l be
compared with the MPI implementation. We have demonstrated that OpenMP can
achieve very good results for parallelization on a shared memory system, but effective
use of memory and cache is very important.

Keywords: NAS Parallel Benchmarks, OpenMP program, shared memory system,
parallel program performance.

∗ MRJ Technology Solutions, NASA Contract NAS2-14303, Moffett Field, CA 94035-1000

- 2 -

- 3 -

The OpenMP Implementation of NAS Parallel Benchmarks and
Its Performance

H. Jin∗, M. Frumkin∗ and J. Yan

NAS Division, NASA Ames Research Center, Moffett Field, CA 94035-1000

Abstract

As the new ccNUMA architecture became popular in recent years, parallel programming
with compiler directives on these machines has evolved to accommodate new needs. In
this study, we examine the effectiveness of OpenMP directives for parallelizing the NAS
Parallel Benchmarks. Implementation details wil l be discussed and performance wil l be
compared with the MPI implementation. We have demonstrated that OpenMP can
achieve very good results for parallelization on a shared memory system, but effective
use of memory and cache is very important.

1. Introduction

Over the past decade, high performance computers based on commodity microprocessors have
been introduced in rapid succession. These machines could be classified into two major
categories: distributed memory (DMP) and shared memory (SMP) multiprocessing systems.
While both categories consist of physically distributed memories, the programming model on an
SMP presents a globally shared address space. Many SMP’s further include hardware supported
cache coherence protocols across the processors. The introduction of ccNUMA (cache coherent
Non-Uniform Memory Access) architecture, such as SGI Origin 2000, promises performance
scaling up to thousands of processors. While all these architectures support some form of
message passing (e.g. MPI, the de facto standard today), the SMP’s further support program
annotation standards, or directives, that allow the user to supply information to the compiler to
assist in code parallelization. Currently, there are two widely accepted standards for annotating
programs for parallel executions: HPF and OpenMP. High Performance Fortran (HPF) [1]
provides a data parallel model of computation for DMP systems. OpenMP [2], on the other hand,
is a set of compiler directives that enhances loop-level parallelism for parallel programming on
SMP systems.

OpenMP is, in a sense, “orthogonal” to the HPF type of parallelization because computation is
distributed inside a loop based on the index range regardless of data location. Parallel

∗ MRJ Technology Solutions, NASA Contract NAS2-14303, Moffett Field, CA 94035-1000

- 4 -

programming with directives offers many advantages over programming with the message
passing paradigm:

• simple to program, with incremental path to full parallelization;

• shared memory model, no need for explicit data distribution;

• scalabil ity achieved by taking advantage of hardware cache coherence; and

• portabil ity via standardization activities.

Perhaps the main disadvantage of programming with compiler directives is the implicit handling
of global data layout. This, in the worst case, may create performance bottleneck and not be
easily overcome. While some vendors have provided extensions to improve data locality with
explicit data distributions and/or placement, these solutions are not portable and effective use of
cache to get an eff icient parallel program is still going to be an important issue.

In this study we will examine the effectiveness of OpenMP directives with the NAS Parallel
Benchmarks (NPB) [3]. These benchmarks, extracted from a set of important aerospace
applications, mimic a class of computation in computation fluid dynamics (CFD), and have been
used to characterize high performance computers. Further description of the benchmarks will be
given in section 3. The concepts of programming with a shared memory model and OpenMP
directives are outlined in section 2. Detailed implementations of directive-based NPBs and their
performance are discussed in section 4. The conclusion is in section 5.

2. SMP Architecture and OpenMP Directives

The use of globally addressable memory in shared memory architectures allows users to ignore
the interconnection details of parallel machines and exploit parallelism with minimum grief.
Insertion of compiler directives into a serial program is the most common and cost-effective way
to generate a parallel program for the shared memory parallel machines.

OpenMP [2] is designed to support portable implementation of parallel programs for shared
memory multiprocessor architectures. OpenMP is a set of compiler directives and callable
runtime library routines that extend Fortran, C and C++ to express shared memory parallelism. It
provides an incremental path for parallel conversion of any existing software, as well as targeting
at scalabil ity and performance for a complete rewrite or an entirely new software.

A fork-join execution model is employed in OpenMP. A program written with OpenMP begins
execution as a single process, called the master thread. The master thread executes sequentially

until the first parallel construct is encountered (such as a “PARALLEL” and “END PARALLEL”

pair). The master thread, then, creates a team of threads, including itself as part of the team. The
statements enclosed in the parallel construct are executed in parallel by each thread in the team

until a worksharing construct is encountered. The “PARALLEL DO” or “DO” directive is such a

worksharing construct which distributes the workload of a DO loop among the members of the

- 5 -

current team. An implied synchronization occurs at the end of the DO loop unless an “END DO

NOWAIT” is specified. Data sharing of variables is specified at the start of parallel or

worksharing constructs using the SHARED and PRIVATE clauses. In addition, reduction

operations (such as summation) can be specified by the “REDUCTION” clause. Upon completion

of the parallel construct, the threads in the team synchronize and only the master thread
continues execution.

OpenMP introduces a powerful concept of orphan directives that greatly simplify the task of
implementing coarse grain parallel algorithms. Orphan directives are directives encountered
outside the lexical extent of the parallel region. The concept allows user to specify control or
synchronization from anywhere inside the parallel region, not just from the lexically contained
region.

There are also tools available that allow the user to examine the correctness of an OpenMP
program and profile the execution for tuning purpose [4].

3. NAS Parallel Benchmarks

3.1. Benchmark Description

NAS Parallel Benchmarks (NPB’s) [1] were derived from CFD codes. They were designed to
compare the performance of parallel computers and are widely recognized as a standard indicator
of computer performance. NPB consists of five kernels and three simulated CFD applications
derived from important classes of aerophysics applications. These five kernels mimic the
computational core of five numerical methods used by CFD applications. The simulated CFD
applications reproduce much of the data movement and computation found in full CFD codes.
The benchmarks are specified only algorithmically (“pencil and paper” specification) and
referred to as NPB 1. Details of the NPB-1 suite can be found in [1], but for completeness of
discussion we outline the seven benchmarks (except for the integer sort kernel, IS) that were
implemented and examined with OpenMP in this study.

• BT is a simulated CFD application that uses an implicit algorithm to solve 3-dimensional (3-
D) compressible Navier-Stokes equations. The finite differences solution to the problem is
based on an Alternating Direction Implicit (ADI) approximate factorization that decouples

the x, y and z dimensions. The resulting systems are Block-Tridiagonal of 5×5 blocks and are

solved sequentially along each dimension.

• SP is a simulated CFD application that has a similar structure to BT. The finite differences
solution to the problem is based on a Beam-Warming approximate factorization that
decouples the x, y and z dimensions. The resulting system has Scalar Pentadiagonal bands of
linear equations that are solved sequentially along each dimension.

- 6 -

• LU is a simulated CFD application that uses symmetric successive over-relaxation (SSOR)
method to solve a seven-block-diagonal system resulting from finite-difference discretization
of the Navier-Stokes equations in 3-D by splitting it into block Lower and Upper triangular
systems.

• FT contains the computational kernel of a 3-D fast Fourier Transform (FFT)-based spectral
method. FT performs three one-dimensional (1-D) FFT’s, one for each dimension.

• MG uses a V-cycle MultiGrid method to compute the solution of the 3-D scalar Poisson
equation. The algorithm works continuously on a set of grids that are made between coarse
and fine. It tests both short and long distance data movement.

• CG uses a Conjugate Gradient method to compute an approximation to the smallest
eigenvalue of a large, sparse, unstructured matrix. This kernel tests unstructured grid
computations and communications by using a matrix with randomly generated locations of
entries.

• EP is an Embarrassingly Parallel benchmark. It generates pairs of Gaussian random deviates
according to a specific scheme. The goal is to establish the reference point for peak
performance of a given platform.

3.2. Source Code Implementations

Sample implementations of NPB 1 are referred to as NPB 2 [4]. The NPB-2 implementations
were based on Fortran 77 (except for IS, which was written in C) and the MPI message passing
standard. They were intended to approximate the performance a typical user can expect for a
portable parallel program on a distributed memory computer. The latest release of NPB2.3 [4]
also contains a serial version of the benchmarks (NPB2.3-serial), which is a stripped-down
version of the MPI implementation. The serial version was intended to be used as a good starting
point for automated parallel tools and compilers and for other types of parallel implementations.

3.3. Our Starting Point

The starting point for our study is the serial version of NPB2.3. Since the NPB2.3-serial is a
stripped-down version of the MPI implementation, its structure was kept to be as close as
possible to the MPI implementation and, thus, was not tuned in a serial sense. For example, a
number of working arrays necessary for the MPI code can be reduced or eliminated in the serial
code to improve the sequential performance. In an effort to reduce the noise in the results due to
the presence of these “imperfections,” we applied optimizations to the sequential codes,
noticeably BT and SP, to improve implementation efficiencies and code organization that could
also limit the parallelization based on the insertion of “directives.” For example, BT and SP were
reorganized so that memory requirements for Class A on one Origin 2000 node are reduced by 6

- 7 -

times and 2 times respectively. Execution speed has been improved significantly. For LU, we
tested two types of implementations for parallelization: “pipeline”, which is used in the MPI
version, and "hyperplane" (or "wavefront") that favors data-parallelism.

In the next section we first discuss the improvements that we applied to the serial version,
noticeably BT and SP, then we describe the OpenMP implementations that are based on the
improved serial versions. To avoid any confusion with the original NPB2.3-serial, we wil l refer
to the modified and improved serial versions of benchmarks as the Programming Baseline for
NPB (PBN). PBN is also the base for the HPF implementations of the NPB’s [6].

4. Implementation

4.1. Sequential Improvements

As mentioned above, during the process of parallelization with directives, we noticed that
NPB2.3-serial contains redundant constructs left over from the MPI implementation. Several
working arrays can also be used more eff iciently in the serial version to improve the
performance. In the following, we describe on the improvements applied to BT and SP since
these changes are more significant and may have implication in real applications.

In the original version of BT in NPB2.3-serial, separate routines are used to form the left-hand
side of the block tridiagonal systems before these systems are solved. Intermediate results are

stored in a six-dimensional working array (LHS); two five-dimensional arrays are used as

additional working space. (See next section for more details.) This is preferable for the multi-
partition scheme [4] used in the parallel MPI implementation to achieve coarse-grained
communication in the Gaussian elimination/substitution process. This has the drawback of using
large amount of memory, thus, potentially increasing the memory traffic. For the directive
version, the explicit communication is not a concern. So, before the parallelization of BT, we
replaced these large working arrays with significantly smaller arrays to reduce the memory usage
and improve the cache performance. This change also requires fusing several loops.

An example of the relevant change is given in Figure 1. On the left panel, the five-dimensional

arrays FJAC and NJAC are assigned in the first loop nesting group and used in the second loop

nesting group. After merging the two outside loop nests (J and K) of the two groups, the two

working arrays (FJAC and NJAC) can be reduced to three-dimensional, as indicated on the right

panel.

- 8 -

DO K = 1, NZ

 DO J = 1, NY

 DO I = 0, NX+1

 FJAC(*,*,I,J,K) = ...

 NJAC(*,*,I,J,K) = ...

 END DO

 END DO

END DO

DO K = 1, NZ

 DO J = 1, NY

 DO I = 1, NX

 LHS(*,*,1,I,J,K) <= FJAC(*,*,I-1,J,K)

 NJAC(*,*,I-1,J,K)

 LHS(*,*,2,I,J,K) <= FJAC(*,*,I,J,K)

 NJAC(*,*,I,J,K)

 LHS(*,*,3,I,J,K) <= FJAC(*,*,I+1,J,K)

 NJAC(*,*,I+1,J,K)

 END DO

 END DO

END DO

DO K = 1, NZ

 DO J = 1, NY

 DO I = 0, NX+1

 FJAC(*,*,I) = ...

 NJAC(*,*,I) = ...

 END DO

 DO I = 1, NX

 LHS(*,*,1,I,J,K) <=

 FJAC(*,*,I-1)

 NJAC(*,*,I-1)

 LHS(*,*,2,I,J,K) <=

 FJAC(*,*,I)

 NJAC(*,*,I)

 LHS(*,*,3,I,J,K) <=

 FJAC(*,*,I+1)

 NJAC(*,*,I+1)

 END DO

 END DO

END DO

Figure 1: The left panel illustrates the use of working arrays in BT from NPB2.3-serial. The right
panel shows the same code section but with the use of much smaller working arrays. The first two

dimensions of FJAC, NJAC and LHS are used for 5×5 blocks.

The same optimization can be applied to the use of array LHS, which was reduced to four

dimensions. The final memory-optimized version of BT uses only 1/6 of the memory needed by
BT in NPB2.3-serial. The performance improvement of the new version is obvious: the serial
execution time has been reduced by a factor of two on four different machines (see the summary
in Table 1 and Figure 2). The timing profile of the key routines in BT is given in Table 2. As one
can see, the memory optimization on BT has improved the performance of the three solvers

(X/Y/Z_SOLVE) by about 50%.

Table 1: Performance improvements of the optimized BT and SP on a single node. The execution
time is given in seconds and the MFLOP/sec numbers are included in parenthesis.

Processor Type Size NPB2.3 Optimized Change

BT

Origin2000 (250MHz) Class A 2162.4(77.82) 1075.2(156.51) 50.3%

T3E Alpha (300MHz) Class W 218.1(35.39) 117.0(65.95) 46.4%

SGI R5000 (150MHz) Class W 549.8(14.04) 265.0(29.13) 51.8%

PentiumPro (200MHz) Class W 316.8(24.36) 121.2(63.69) 61.7%

- 9 -

SP

Origin2000 (250MHz) Class A 1478.3(57.51) 971.4(87.52) 34.3%

T3E Alpha (300MHz) Class A 3194.3(26.61) 1708.3(49.76) 46.5%

SGI R5000 (150MHz) Class W 1324.2(10.70) 774.1(18.31) 41.5%

PentiumPro (200MHz) Class W 758.9(18.68) 449.0(31.57) 40.8%

�
� �

� �
� �
� �

� � �
� � �
� � �
� � �

��
�	

 �� �

�

� � � �
� � � � � �

� � � �
� � � � � �

� � � �
� � � � � �

� � � � �
� � � � � �

 ! " # $ % & ' () * + , -
 ! . / 0 + 1 + 2) 3

�
� �
� �
4 �

� �
5 �
� �
6 �
� �

7 �

��
�	

 �� �

�

� � � �
� � � � � �

� � � �
� � � � � �

� � � �
� � � � � �

� � � � �
� � � � � �

8 # " # $ % & ' () * + , -
8 # . / 0 + 1 + 2) 3

Figure 2: Comparison of serial performance of the optimized BT and SP with NPB2.3-serial.

A similar optimization, namely on the more effective use of working array LHS, has been

applied to the serial version of SP. The execution times of the optimized SP and the version from
NPB2.3 are compared in Table 1 and Figure 2. The improvement of execution time for SP is not
as significant as that for BT because in SP, the temporary working arrays are smaller. The serial
performance is still improved by about 40% on average.

Table 2: Breakdown comparison of routines in the optimized and NPB2.3 BT. Timing was
obtained on an Origin2000 node (195 MHz) for the Class A problem size. The relative
percentage of timing is included in parenthesis.

Component Time (NPB2.3) Time (Optimized) Change

RHS 232.87 (8.84%) 248.59 (16.98%) (6.75%)

XSOLVE 722.91 (27.44%) 365.78 (24.98%) 49.40%

YSOLVE 793.75 (30.13%) 376.55 (25.72%) 52.56%

ZSOLVE 862.92 (32.76%) 463.74 (31.67%) 46.26%

ADD 21.72 (0.82%) 21.40 (1.46%) 1.47%

Total 2634.20 (100.0%) 1464.25 (100.0%) 44.41%

- 10 -

4.2. Application Benchmark BT

The main iteration loop in BT contains the following steps:

DO STEP = 1 , N I TER

 CALL C OMPUTE_RHS

 CALL X _SOLVE

 CALL Y _SOLVE

 CALL Z _SOLVE

 CALL A DD

END DO

The RHS array is first computed from the current solution (COMPUTE_RHS). Block tridiagonal

systems are formed and solved for each direction of X, Y, and Z successively (X_SOLVE,

Y_SOLVE, Z_SOLVE). The final solution is then updated (ADD).

The optimized serial version of BT is our starting point for the OpenMP implementation. There
are several steps in the parallelization process:

1) Identify loops where different iterations can be executed independently (parallel loops).

2) Insert “ !$OMP PARALLEL DO” directives for the outer-most parallel loops to ensure

large granularity and small parallelization overhead. If several parallel loops can be

grouped into a single parallel region, the “ !$OMP PARALLEL” directive is used. This

can potentially reduce the fork-and-join overhead.

3) List all the privatizable variables in the “PRIVATE() ” constructs.

4) Touch the data pages by inserting initialization loops in the beginning of the program. On
a cache coherent non-uniform memory architecture (ccNUMA) like the Origin 2000, a
data page is owned by a processor that touches the data page first unless page migration
is turned on. Such a scheme needs to be tested on other SMP systems.

The identification of parallel loops and privatizable variables can be assisted by computer-aided
tools such as CAPO [8] (based on a parallelization tool kit, CAPTools [9], developed at the
University of Greenwich). Additional parallelization involves reduction sums outside the
iteration loop in computing solution errors and residuals, which are easily handled with the

“REDUCTION” directive.

Timing profiles of the key code sections in the OpenMP BT were measured on the Origin2000.
The results are shown in Figure 3. A major portion of the execution time is spent in the three

solvers (xsolve , ysolv e, zsolv e), which scale fairly well (close to linear). The zsolve

routine spends more time than xsolve and ysolve because data were touched initially in

favor of the x and y solver. The worse scalability of rhsz can also be attributed to the same

- 11 -

cause. The second-order stencil operation in rhsz uses the K±2, K±1 and K elements of the

solution array to compute RHS for the z direction:

RHS(I , J, K) = A * U(I , J , K- 2) + B * U(I , J,K- 1) + C * U(I , J , K)

 + D * U(I , J, K+1) + E * U(I , J , K+2) .

Such an operation accesses memory with long strides and is not cache friendly. One way to
improve the performance is by first copying a slice of data in the K direction to a small 1-D

working array, performing the stencil operation, then copying the result back to RHS. This

technique, in fact, is used in the FT benchmark as described in a later section. The slightly worse

performance of the “ADD” routine can be attributed to the small amount of calculation done

inside the parallel loop and the parallization overhead of the “PARALLEL DO” directive seems

to play a role. Overall , the directive-based BT performs very close to the MPI version (optimized
for memory usage) although the latter still scales better (see section 0 for more discussion).

4.3. Application
Benchmark SP

The iteration procedure of SP
is very similar to BT although
the approximate factorization
is different. In one time
iteration, the following steps
are taken in SP:

CALL C OMPUTE_RHS

CALL T XI NVR

CALL X _SOLVE

CALL T XI NVR

CALL Y _SOLVE

CALL T XI NVR

CALL Z _SOLVE

CALL T ZETAR

CALL A DD

The optimized serial version
of SP as described in section 4.1 was used for parallelization. The steps taken to parallelize SP
were very similar to those for BT. The outer-most loops in each of these routines were

parallelized with the “PARALLEL DO” directive. To further reduce the parallelization overhead,

several end-of-loop synchronizations have been removed (mostly in COMPUTE_RHS) by the use

of “ !$OMP END DO NOWAIT” , as was done in BT.

100

2
3
5

101

2
3
5

102

2
3
5

103

E
xe

cu
tio

n
T

im
e

 (
se

cs
)

1 2 3 4 5 6 8 10 20 30

Number of Processors

 total
 rhsx
 rhsy
 rhsz
 xsolve
 ysolve
 zsolve
 add
 MPI

BT Class A

Figure 3: Execution profile of different components in OpenMP BT,
measured on the Origin 2000. The total time from the MPI version is
shown as a reference (same for other cases).

- 12 -

The profile of the directive-based parallel version of SP is shown in Figure 4. For the class A
size, the overall performance of the OpenMP SP is better than the MPI version from NPB2.3 on
less than 9 processors, but the MPI version scales better (see more discussion in section 4.8).
Further analysis has indicated that the performance bottleneck of the directive version is from

rhsz in COMPUTE_RHS although routine ADD did not scale as well. The situation is very

similar to what was in BT (see section 4.3) where the second-order stencil operation on the K

direction in rhsz has caused more caches misses and remote memory access than on the other

two directions. This is also the reason for poor performance in zsolve , which runs about a

factor of 2-3 times slower than xsolve and ysolve on 1 processor and 4 times slower on 16

processors.

4.4. Application Benchmark
LU

LU factorizes the equation into
lower and upper triangular
systems. The systems are
solved by the SSOR algorithm
in the following iteration loop.

DO I STEP=1, I TMAX

 CALL C OMPUTE_RHS

 CALL J ACLD

 CALL B LTS

 CALL J ACU

 CALL B UTS

 CALL A DD

END DO

As in BT and SP, the RHS is

first calculated. Then the lower-triangular and diagonal systems are formed (JACLD) and solved

(BLTS), followed by the upper-triangular system (JACU and BUTS). The solution is lastly

updated. In solving the triangular systems, the solution at (i,j,k) depends on those at (i+e,j,k),

(i,j+e,k) and (i,j,k+e) where e=-1 for BLTS and e=1 for BUTS.

There are at least two methods to implement LU in parallel: hyperplane and pipelining. The
hyperplane (or wavefront) algorithm exploits the fact that, for all the points on a given hyper-
plane defined by l = i+j+k, calculations can be performed independently, provided the solution
for l+e is available. This is illustrated in the left panel of Figure 5 for a 2-D case. Bullets indicate
points where solutions are already calculated and circles are points to be calculated. The
calculations are performed along the diagonal. As we will see, the hyperplane algorithm does not

100

2
3
5

101

2
3
5

102

2
3
5

103

E
xe

cu
tio

n
T

im
e

 (
se

cs
)

1 2 3 4 5 6 8 10 20 30

Number of Processors

 total
 rhsx
 rhsy
 rhsz
 xsolve
 ysolve
 zsolve
 txinvr
 tzetar
 add
 MPI

SP Class A

Figure 4: Execution profile of different components in the directive-
based SP, measured on the Origin 2000.

- 13 -

utilize cache lines well for either column-major or row-major storage of data (see later discussion
in this section).

The implementation of the parallelized hyperplane algorithm with directives is straightforward.
Index arrays for all points on a given hyperplane l are first calculated. Loops for solving all
points on a given hyperplane can then be performed in parallel. A sketch of the implementation
for the lower triangular system is summarized below.

DO L=LST, L END

 CALL CALCNP(L, N P, I NDI , I NDJ)

 !$OMP PARALLEL DO PRIVATE(I,J,K,N)

 DO N=1, NP

 I = I NDI (N)

 J = I NDJ(N)

 K = L – I - J

 CALL JACLD(I , J , K)

 CALL BLTS(I , J, K)

 END DO

END DO

The upper triangular system is similar except that the L loop starts from LEND and decrements to

LST. The index arrays can be pre-calculated before the time iteration loop to eliminate the

repetition and improve the performance.

The second method for the parallel implementation of the SSOR algorithm in LU is pipelining.
The method is illustrated in the right panel of Figure 5 for a case where four processors are
working on the pipeline with work distributed along the J direction. Processor 0 starts from the
low-left corner and works on one slice of data for the first K value. Other processors are waiting

 k

 j

 k

 j

hyperplane pipelining

 l

0

1

2

3

Figure 5: Schematic il lustration of the hyperplane and pipeling algorithms.

- 14 -

for data to be available. Once processor 0 finishes its job, processor 1 can start working on its
slice for the same K and, in the meantime, processor 0 moves onto the next K. This process
continues until all the processors become active. Then they all work concurrently to the opposite
end. The cost of pipelining results mainly from the wait in startup and finishing. A 2-D
pipelining can reduce the wait cost and was adopted in the MPI version of LU [10].

The implementation of pipeline in LU with OpenMP directives is done by the point-to-point

synchronization through the “ !$OMP FLUSH() ” directive. This directive ensures a consistent

view of memory from all threads for the variables enclosed in the argument and is used at the
precise point at which the synchronization is required. As an example of using this directive to

set up a pipeline, the structure of the lower-triangular solver in SSOR is illustrated in the

following.

 !$OMP PARALLEL PRIVATE(K,iam,numt)

ia m = omp_get _t hr ead_num()

numt = omp_get _num_t hr eads()

is ync(i am) = 0

 !$OMP BARRIER

DO K=KST, KEND

 CALL JACLD(K)

 CALL BLTS(K, i am, i sync, numt)

END DO

 !$OMP END PARALLEL

The K loop is placed inside a parallel region, which defines the length of the pipeline (refer to

Figure 5). Two OpenMP library functions are used to obtain the current thread ID (iam) and the

total number of threads (numt). The globally shared array “ isync ” is used to indicate the

availabil ity of data from neighboring threads: 1 for ready, 0 for not ready. Together with the

FLUSH directive it sets up the point-to-point synchronization between threads, as was done in

routine BLTS.

SUBROUTI NE BLTS(K, i am, i sync, numt)

in t eger i am, i sync(0: i am)

il i mi t = M I N(numt , JEND- JST)

if (i am. gt . 0 . and. i am. l e. i l i mi t) t hen

 do w hi l e (i sync(i am- 1) . eq. 0)

!$OMP FLUSH(isync)

 end d o

 i sync(i am- 1) = 0

!$OMP FLUSH(isync)

 endif

!$OMP DO

 DO J =JST, JEND

- 15 -

 Do the work for (J,K)

 ENDDO

!$OMP END DO nowait

 i f (i am . l t . i l i mi t) t hen

 do w hi l e (i sync(i am) . eq. 1)

!$OMP FLUSH(isync)

 end d o

 i sync(i am) = 1

!$OMP FLUSH(isync)

 endif

 RETURN

 END

The two WHILE loops set up waits through the

variable isync . The FLUSH directive ensures

the value of isync is up-to-date for all

threads at the point where the directive is
present. The first synchronization before the J
loop behaves similar to the receive function in
a message passing program, which waits for
availabil ity of data from the previous thread

(iam-1). The second synchronization is

similar to the send function, which sets a flag
for the next thread. It is necessary to remove
the end-of-loop synchronization for the J loops

in both JACLD and BLTS with the “NOWAIT”

construct since the pipeline implies
asynchronous for the loop iterations.

Both parallel versions were tested on the
Origin 2000 and compared with the MPI
implementation. The time profiles for key
routines are plotted in the upper panel of
Figure 6 for the hyperplane version and in the
middle for the pipeline version. Timing ratios
of the two versions are given in the bottom panel. The pipeline implementation clearly has better
performance than the hyperplane version, about 50% better on 16 processors. The RHS behaves
similar, but the main differences come from the four main routines in the SSOR solver and
become larger as the number of processors increases. It can be attributed to better cache
utilization in the pipeline implementation. To support this argument, cache misses for the two
versions were measured with the hardware counter available on the Origin 2000 R10K processor

100

2
3
5

101

2
3
5

102

2
3
5

103 LU Class A
Hyperplane

100

2
3
5

101

2
3
5

102

2
3
5

103

E
xe

cu
tio

n
T

im
e

 (
se

cs
)

 total
 rhsx
 rhsy
 rhsz
 jacld
 blts
 jacu
 buts
 add
 MPI

LU Class A
Pipeline

0.5

1.0

1.5

2.0

2.5

T
hp

/T
pp

1 2 4 6 8 10

Number of Processors
16

MFLOPS

Total

Figure 6: Execution profile of different components
in LU for both the hyperplane and pipelining
algorithms. Two methods are compared at the

bottom.

- 16 -

and the results are listed in Table 3 measurements done on 1 CPU and 4 CPUs. With one CPU,
the pipeline version has slightly less L1 and L2 cache misses, but the TLB miss is significantly
less. With four CPUs, both versions have less L2 cache misses and, still, the pipeline version has
much better cache performance.

When comparing with the message passing implementation of pipelining, the directive-based
version does not scale as well. We believe this performance degradation in the directive
implementation due to the sizable synchronization overhead in the 1-D pipeline as against the 2-
D pipeline used in the message passing version.

4.5. Kernel Benchmark FT

Benchmark FT performs the spectral method with first a 3-D fast Fourier transform (FFT) and
then the inverse in an iterative loop.

CALL S ETUP

CALL FFT(1)

DO I TER=1, N I TER

 CALL E VOLVE

 CALL FFT(- 1)

 CALL C HECKSUM

END DO

The 3-D data elements are filled with pseudo random numbers in SETUP. Since the random

number seed for each K value can be pre-calculated, the K loop that initializes each data plane
can be done in parallel, as illustrated in the following:

 DO K=1, D 3

Table 3: Cache performance of the hyperplane and pipeline versions of LU, measured with the

per f ex tool on the Origin2000. Cycles and cache misses are given in seconds. Numbers

were obtained for 1/10th of the full iteration for Class A.

1 CPU 4 CPUs
Counter hyperplane pipeline hyperplane pipeline
Cycles (secs) 152.987 133.395 158.671 137.769

L1 cache miss (secs) 47.508 44.693 47.296 44.760

L2 cache miss (secs) 39.164 32.234 20.744 14.417

TLB miss (secs) 30.419 13.317 31.205 12.857

L1 cache line reuse 5.646 7.062 6.226 9.315

L2 cache line reuse 9.165 10.618 18.106 25.016

L1 hit rate 0.8495 0.8760 0.8616 0.9031

L2 hit rate 0.9016 0.9139 0.9477 0.9616

- 17 -

 seeds(K) = Calc_seeds(K, D 1, D 2)

 END DO

!$OMP PARALLEL DO PRIVATE(K...)

 DO K=1, D 3

 U0(K_pl ane) = Generate_prandom(se eds(K) , D 1* D2)

 END DO

The 3-D FFT in the kernel is performed with three consecutive 1-D FFTs in each of the three
dimensions. The basic loop structure of the 1-D FFT is as follows (for the first dimension).

!$OMP PARALLEL DO PRIVATE(I,J,K,W)

 DO K = 1 , D 3

 DO J = 1 , D 2

 DO I = 1 , D 1

 W(I) = U (I , J , K)

 END DO

 CALL CFFTZ(. . . , W)

 DO I = 1 , D 1

 U(I , J , K) = W (I)

 END DO

 END DO

 END DO

A slice of the 3-D data (U) is first copied to a 1-D work array (W). The 1-D fast Fourier

transform routine CFFTZ is called for W. The result is returned to W and, then, copied back to

the 3-D array (U). Iterations of the outside K and J loops can be executed independently and the

“PARALLEL DO” directive is added to the K loop with working array W as private. Better

parallelism could be achieved if the nested J loop is also considered. However, this would
require the use of non-standard extensions to OpenMP directives provided in the SGI MIPSpro
compiler used in this study.

Inside the iteration loop, routine EVOLVE computes the exponent factors for the inverse FFT. It

contains three nested DO loops. The outer loop is selected for parallelization with directives.

Lastly, a parallel reduction is implemented in routine CHECKSUM.

The execution profile of several main components of the parallel code for Class A is shown in

Figure 7. The three 1-D FFT routines and SETUP scale up very well although EVOLVE performs

slightly worse for more than 16 processors. CHECKSUM used very little time, thus, was not

shown in the figure. It is worthwhile to point out that the overall performance of the OpenMP
version is about 10% better than the hand-coded MPI implementation from NPB2.3. The better
performance of the directive version is due to the elimination of a 3-D data array which was
needed in the MPI version. The change has improved the memory utili zation of the code.

- 18 -

4.6. Kernel Benchmark MG

The iteration loop of MG consists of the multigrid V-cycle operation and the residual calculation.
The V-cycle algorithm is performed in the following sequence:

CALL r pr j 3

CALL psi nv

CALL i nt erp

CALL r es i d

CALL psi nv

The residual is first restricted from the fine grid to the coarse with the projection operator

(r pr j 3). An approximate solution is then calculated on the coarsest grid (ps i nv), followed by

the prolongation of the solution from the coarse grid to the fine (in t er p). At each step of the

prolongation, the residual is calculated (r esid) and a smoother is applied (ps i nv).

Parallelization of MG with directives is straightforward. “PARALLEL DO” directives are added

to the outer-most loops in the above mentioned routines. Reductions (+ and MAX) are used in the
calculation of norm. Since the loops are well organized in the benchmark, it is not surprising that
the performance of the OpenMP version is very close to the MPI version (as compared in Figure
8). The execution profile of each component in MG has shown consistent results and good
speedup. It indicates that the loop-level parallelization has worked well for MG.

10-1

2
3
5

100

2
3
5

101

2
3
5

102

E
xe

cu
tio

n
T

im
e

 (
se

cs
)

1 2 3 4 5 6 8 10 20 30

Number of Processors

 total
 setup
 evolve
 chksum
 fftx
 ffty
 fftz
 MPI

FT Class A

Figure 7: Execution profile of different components in the OpenMP-based

FT. The total time is also compared with the MPI version from NPB2.3.

- 19 -

4.7. Kernel Benchmarks CG and EP

CG and EP are probably the easiest ones for parallelization in the seven studied benchmarks. So
we summary them here in the same subsection.

The parallelization of CG is mostly
performed on the loops inside the
conjugate gradient iteration loop, which
consists of one sparse-matrix vector
multiplication, two reduction sums and
several paxpy operations. Norms are
calculated (via reduction) after the

iteration loop. Adding “PARALLEL

DO” directives with proper reductions on

these loops seems working reasonably
well , as illustrated by the time profile in
Figure 9. The change of execution time
from 1 to 2 CPUs is sub-linear, but from
4 to 8 CPUs is super-linear. This seems
occurring in the MPI version as well .
But for more than 16 processors, the
performance of the directive version degrades quickly, most likely due to that the overhead
associated with directives wins over the small workloads for the loops considered. Setup of the

5

10-1

2
3
5

100

2
3
5

101

2
3
5

E
xe

cu
tio

n
T

im
e

 (
se

cs
)

1 2 3 4 5 6 8 10 20 30

Number of Processors

 total
 psinv
 resid
 rprj3
 interp
 norm2
 MPI

MG Class A

Figure 8: Execution profile of different components in the OpenMP-based MG. The

total timing of the MPI version from NPB2.3 is plotted as a reference (dash line).

100

2
3
5

101

2
3
5

E
xe

cu
tio

n
T

im
e

 (
se

cs
)

 directive
 MPI

CG Class A

3
5

101

2
3
5

102

1 2 3 4 5 6 8 10 20 30

Number of Processors

 directive
 MPI

EP Class A

Figure 9: Execution time of the OpenMP directive-based
CG and EP versus the MPI implementations.

- 20 -

sparse matrix (makea) with random numbers was done in serial. Profil ing with the perfex tool

on the Origin 2000 has indicated that irregularly accessing the matrix causes large amount of
L1/L2 cache misses, which certainly affect the performance on large number of processors.

In the EP benchmark, the generation of pseudo random numbers can be done in parallel (as in the
case of FT). The main loop for generating Gaussian pairs and tallying counts is totally parallel,
with several reduction sums at the end. Performance data (Figure 9, lower panel) have indicated
that the directive parallel version has a linear speedup, essentially overlapping with the MPI
implementation.

4.8. Performance Summary

To summarize the results, the
reported MFLOPs per second per
processor for all seven benchmarks
are plotted in Figure 10 and the
execution times are in Figure 11.
These numbers were obtained on
the Origin 2000, 195 MHz, for the
Class A problem. The measured
execution time and MFLOPs are
included in the Appendix, together
with the corresponding values from
the MPI versions for a comparison.

As one can see, overall OpenMP
versions performed quite well ,
close or similar to the MPI
correspondence in many cases,
even better for FT. However, the
OpenMP version generally does not
scale as well as the MPI version.
We believe this is mainly due to the
lack of nested parallelization (on
multiple dimensions) in the
implementation as was done in the
MPI version. Although the
OpenMP standard has a notion of

nested parallel DO’ s, but the

compiler tested does not fully
support this function. The second

0

25

50

75

100

125

 NPB2.3-MPI
 MPI-optimized
 OpenMP

BT Class A

 NPB2.3-MPI
 omp-pipeline
 omp-hyperplane

LU Class A

0

25

50

75

M
F

LO
P

/s
/p

ro
c

SP Class A FT Class A

0

25

50

75
MG Class A

1 2 3 4 6 8 10 20 30

CG Class A

0

3

6

1 2 3 4 6 8 10 20 30

Number of Processors

EP Class A

 NPB2.3-MPI
 OpenMP

Machine:
SGI Origin2000 (195MHz)

Figure 10: Measured MFLOP/sec/processor for the seven
benchmarks parallelized with OpenMP directives (filled
symbols) in comparison with the NPB2.3-MPI version (open
symbols). Two additional curves are included for the
optimized MPI version of BT and a hyperplane OpenMP

implementation of LU.

- 21 -

factor is due to the long-stride access of memory in several codes, which is not cache friendly
and causes remote-memory congestion. In the MPI version, the memory access is pretty much
local (to a compute node). The utilization of overlapping computation and com-munication in the
MPI versions, such as BT and SP, improves scalabil ity.

At least in the case of CG, the performance degradation on large number of processors is due to
the poor cache handling in the code, as indirectly indicated by the relative small MFLOP values
compared to the other benchmarks (except for EP). The parallelization for CG with directives
was done at much finer-grained loop levels and the overhead associated with it will likely
dominate on the large number of processors.

In LU, the pipeline implementation performed better than the hyperplane version, in both time
and scalability. The pipeline version has better cache performance. In order to get even closer to
the performance of the MPI version, a 2-D pipelining seems necessary.

3

5

102

2
3

5

103

2

 NPB2.3-MPI
 MPI-optimized
 OpenMP

BT Class A SP Class A

 NPB2.3-MPI
 OMP (pipeline)
 OMP (hyperplane)

LU Class A

2
3

5

101

2
3

5

102

E
xe

cu
tio

n
T

im
e

 (
se

cs
) FT Class A

1 2 3 4 5 6 8 10 20 30

Number of Processors

MG Class A

1 2 3 4 5 6 8 10 20 30

CG Class A

3

5

101

2
3

5

102

1 2 3 4 5 6 8 10 20 30

EP Class A

 NPB2.3-MPI
 OpenMP

Machine:
SGI Origin2000 (195MHz)

Figure 11: Measured execution time for the seven benchmarks parallelized with OpenMP
directives (filled symbols) in comparison with the NPB2.3-MPI version (open symbols). Two
additional curves are included for the optimized MPI version of BT and a hyperplane OpenMP
implementation of LU.

- 22 -

Another observation is that the memory optimization for BT has impact not only on the serial
performance, but also on the parallel performance. The OpenMP version of BT is about a factor
of two better than the MPI version in NPB2.3 (fil led circles vs. open squares in Figure 10). After
applying the similar optimization technique to the MPI version, the performance has been
improved by a factor of two (filled squares in Figure 10). Because of the limited cache size in a
machine, it is still important to effectively utilize memory to reduce the cache misses (cache-
memory traffic) and improve the performance. The improvement for SP is not as profound as
that for BT, but the effect is visible on small number of processors.

5. Conclusion

The current work presented a study of the effectiveness of the OpenMP directives to parallelize
the NAS Parallel Benchmarks. The seven benchmarks implemented show very good
performance, even though the scalabil ity is worse than the MPI counterpart. However, this
situation could be improved with the use of nested parallelism (or even multi-level parallelism)
at different loop nesting levels. Still the most plausible strength of OpenMP is its simplicity and
the incremental approach towards parallelization.

The OpenMP implementations were based on the optimized sequential versions of the original
NPB2.3-serial [4]. Together with an HPF implementation [6], they form the Programming
Baseline for NPB (PBN). Techniques explored in the study can certainly be applied to more
realistic applications and can be used in the development of parallization tools and compilers. In
fact, this study resulted from the comparison of parallization tools and compilers [2] and was
done in conjunction with the development of a parallelizing tool, CAPO [8], for the automated
generation of OpenMP parallel programs. Another earlier work [11] has presented the study of
tools and compiler for parallelization of NAS Benchmarks with directives.

Further work will be done on the improvement of the scalabil ity of PBN-OpenMP and the
development of an OpenMP C version of IS benchmark for the completion of the suite. New
effort will emphasize on the development of a benchmark suite to incorporate the existing
benchmarks to run concurrently on a computational grid environment.

We would like to acknowledge the valuable discussion with and suggestion from the original
NPB developers, in particular, Drs. Maurice Yarrow and Rob Van der Wijngaart at NASA Ames
Research Center. We also want to thank Dr. Gabriele Jost for testing the implementation.

References

[1] High Performance Fortran Forum, “High Performance Fortran Language Specification,”
CRPC-TR92225, January 1997, http://www.crpc.rice.edu/CRPC/softlib/TRs_online.html.

[2] OpenMP Fortran Application Program Interface, http://www.openmp.org/.

- 23 -

[3] D. Bailey, J. Barton, T. Lasinski, and H. Simon (Eds.), “The NAS Parallel Benchmarks,”
NAS Technical Report RNR-91-002, NASA Ames Research Center, Moffett Field, CA,
1991.

[4] KAP/Pro Toolset, "Assure/Guide Reference Manual," Kuck & Associates, Inc. 1997.

[5] D. Bailey, T. Harris, W. Saphir, R. Van der Wijngaart, A. Woo, and M. Yarrow, “The NAS
Parallel Benchmarks 2.0,” NAS Technical Report NAS-95-020, NASA Ames Research
Center, Moffett Field, CA, 1995. http://science.nas.nasa.gov/Software/NPB.

[6] M. Frumkin, H. Jin, and J. Yan, “Implementation of NAS Parallel Benchmarks in High
Performance Fortran,” NAS Technical Report NAS-98-009, NASA Ames Research Center,
Moffett Field, CA, 1998.

[7] M. Frumkin, M. Hribar, H. Jin, A. Waheed, and J. Yan, “A Comparison of Automatic
Parallelization Tools/Compilers on the SGI Origin2000 using the NAS Benchmarks,” in
Proceedings of SC98, Orlando, FL, 1998.

[8] H. Jin, J. Yan and M. Frumkin, “Automatic Generation of Directive-based Parallel
Programs with Computer-Aided Tools,” in preparation.

[9] C.S. Ierotheou, S.P. Johnson, M. Cross, and P. Legget, “Computer Aided Parallelisation
Tools (CAPTools) – Conceptual Overview and Performance on the Parallelisation of
Structured Mesh Codes,” Parallel Computing, 22 (1996) 163-195. http://captools.gre.ac.uk/.

[10] M. Yarrow and R. Van der Wijngaart, “Communication Improvement for the LU NAS
Parallel Benchmark,” NAS Technical Report NAS-97-032, NASA Ames Research Center,
Moffett Field, CA, 1997.

[11] A. Waheed and J. Yan, “Parallelization of NAS Benchmarks for Shared Memory
Multiprocessors," in Proceedings of High Performance Computing and Networking (HPCN
Europe '98), Amsterdam, The Netherlands, April 21-23, 1998.

- 24 -

Appendix

Table 4: Execution time and MFLOP/sec/proc (in parenthesis) of the OpenMP directive-based NPBs (7
benchmarks) measured on the SGI Origin 2000, 195MHz. For comparison, timings of the MPI

implementation from NPB2.3 are also included in the table.

BT Class A

#Procs NPB2.3-MPI MPI-optimized OpenMP

1 2611.0 (64.45) 1641.2 (102.54) 1477.8 (113.87)

2 - - 749.0 (112.34)

4 778.6 (54.04) 411.6 (102.22) 387.6 (108.54)

9 390.5 (47.88) 167.8 (111.44) 177.9 (105.09)

16 223.2 (47.12) 93.7 (112.22) 106.1 (99.09)

25 100.6 (66.90) 62.1 (108.48) 76.0 (88.55)

32 - - 54.3 (96.79)

36 96.8 (48.27) 48.5 (96.42) 53.7 (87.00)

SP Class A

#Procs NPB2.3-MPI OpenMP

1 1638.4 (51.89) 1227.1 (69.28)

2 - 646.0 (65.80)

4 412.8 (51.49) 350.4 (60.64)

8 - 175.0 (60.74)

9 154.4 (61.18) 160.8 (58.74)

16 88.4 (60.11) 91.4 (58.15)

25 55.2 (61.61) 72.7 (46.79)

32 - 51.8 (51.28)

36 56.8 (41.58) -

- 25 -

LU Class A

#Procs NPB2.3-MPI OpenMP-hp OpenMP-pipe

1 1548.4 (77.05) 1518.3 (78.57) 1234.4 (96.64)

2 731.1 (81.58) 738.2 (80.81) 585.6 (101.86)

4 344.0 (86.71) 400.3 (74.49) 336.2 (88.69)

8 158.7 (93.99) 227.1 (65.68) 184.4 (80.88)

9 - 213.8 (61.99) -

16 73.9 (100.90) 151.5 (49.22) 96.1 (77.54)

32 38.9 (95.83) 100.7 (37.02) 57.1 (65.23)

FT Class A

#Procs NPB2.3-MPI OpenMP

1 133.4 (53.50) 114.46 (62.35)

2 82.5 (43.25) 60.22 (59.25)

4 41.3 (43.20) 30.94 (57.66)

8 21.4 (41.68) 16.15 (55.23)

16 11.3 (39.47) 8.59 (51.95)

32 6.1 (36.56) 4.84 (46.05)

MG Class A

#Procs NPB2.3-MPI OpenMP

1 53.4 (72.92) 47.58 (81.81)

2 31.0 (62.80) 27.06 (71.92)

4 14.9 (65.33) 13.71 (71.00)

8 7.5 (64.90) 6.99 (69.60)

16 4.0 (60.84) 3.91 (62.27)

32 2.2 (55.31) 2.53 (48.15)

- 26 -

CG Class A

#Procs NPB2.3-MPI OpenMP

1 44.40 (33.71) 47.74 (31.35)

2 28.46 (26.30) 28.65 (26.12)

4 13.62 (27.46) 14.03 (26.66)

8 4.54 (41.24) 4.76 (39.32)

16 2.67 (35.05) 2.46 (37.95)

32 1.78 (26.20) 2.19 (21.32)

EP Class A

#Procs NPB2.3-MPI OpenMP

1 123.6 (4.34) 124.46 (4.31)

2 62.0 (4.33) 62.34 (4.30)

4 31.0 (4.33) 31.13 (4.31)

8 15.5 (4.33) 15.59 (4.30)

16 7.8 (4.30) 7.83 (4.28)

32 4.0 (4.19) 4.11 (4.08)

